TMGcore Develops Two-Phase Liquid Immersion Cooled Data Center Platform using 3M™ Fluids

Groundbreaking technology to debut at Supercomputing 2019

(TMTCORE, a provider of data center solutions and manufacturer of data center hardware, today announced it has developed a line of data center platforms that exclusively use two-phase liquid immersion cooling with 3M™ Fluorinert™ Electronic Liquids that will be unveiled at Supercomputing 2019 (SC19) in Denver, Colorado on November 18 at Booth 1981.

“Today’s data centers are faced with the challenge of providing massive processing capabilities while reducing their power and water usage, and we’re able to meet those challenges head on with immersion cooling,” said John-David Enright, CEO of TMGcore. “We collaborated with 3M to explore a pioneering technology solution that featured 3M’s fluids for two-phase liquid immersion cooling, and we are proud to introduce a truly first-of-its-kind data center platform that no one in the industry has been able to achieve.”

Recognizing the challenges of rising operating costs and environmental impact of the data center industry, TMGcore began working on the new platform nearly two years ago to develop a two-phase, liquid immersion cooling technology using 3M fluids and tested it in one of the most energy-intensive applications: cryptocurrency mining. The company wanted to test the processing power of a data center platform utilizing their own proprietary technology on large amounts of data and compare the results to a traditional data center. The resulting platform, Everest, operated in one-fourth the physical space of a traditional data center with 70 percent less water usage, but with 35 percent more processing power.

In late 2018, TMGcore sought to build on the success of Everest and began work to develop a new data center platform that was even more efficient, cost-effective and scalable. The soon-to-be-released data center platform uses a tenth of the space in comparison to traditional data center products, uses zero water and reduces operational costs by an average of 70 percent while providing 10 times more processing power per square foot of actual IT load. The new data center platform relies exclusively on two-phase immersion cooling using 3M fluids.

“3M is pleased to support TMGcore’s newest data center platform innovation,” said Nancy Chang, business development manager for 3M. “The use of two-phase immersion cooling technology with 3M fluids in this new platform demonstrates how immersion cooling can help enable a more efficient and high-performing data center. We congratulate TMGcore on their achievement as they work to help transform the data center industry to meet future needs.”
3M is recognized as a pioneer and innovator in immersion cooling technologies and a leader in the liquid cooling revolution for data centers. Immersion cooling using 3M fluids can help improve efficiency and meet emerging density needs while reducing costs throughout the life of a data center.

Those attending SC19 can visit TMGcore at booths 1981 and 1995, schedule one-on-one demos to see the new data center platform and receive a made-to-order facility design that is customized to your own requirements. For more information and to schedule an in-person meeting, visit https://tmgcore.lpages.co/tmgcore.

About TMGcore
TMGcore is a U.S.-based provider of two-phase liquid immersion cooled (2PLIC) data center solutions and manufacturer of 2PLIC high performance computing (HPC) hardware committed to building innovative solutions that solve and mitigate the industry’s most pressing challenges. With its flagship solution debuting in November 2019, TMGcore has balanced the demands of data processing while reducing capital and operating costs as well as the environmental impact. The soon-to-be-released data center platform is a tenth of the size of a traditional data center, uses zero water and reduces operational costs by an average of 70 percent while providing 10 times more processing power per square foot. For more information, visit www.tmgcore.com.

###